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When do you need HPC workflow?

Example application: protein-ligand docking for drug screening
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Expressing this many task workflow in Swift

For protein docking workflow:

foreach p, 1 i1n proteins {
foreach ¢, jJ 1n ligands {
(structure[1i,]], log[i,]])
dock(p, ¢, minRad, maxRad);

}

scatter plot = analyze(structure)

To run:

swift —site blues dock.swift

S



Swift enables execution of simulation campaigns across
multiple HPC and cloud resources
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The Swift runtime system has drivers and algorithms to efficiently support and aggregate diverse runtime environments




What Swift does for you

Makes parallelism more transparent
Implicitly parallel functional dataflow programming

Makes computing location more transparent

Runs your script on multiple distributed sites and
diverse computing resources (desktop to petascale)

Makes basic failure recovery transparent
Retries/relocates failing tasks
Can restart failing runs from point of failure



Swift in a nutshell

= Data types = Structured data
string s = “hello world”; image A[]<array mapper..>;
int i = 4; B
int A[];
= Loops
= Mapped data types foreach f,1 in A {
type image; B[1] = convert (A[1l]):
image filel<%“snapshot.jpg”>; }

= Mapped functions
app (file o) myapp(file f, int i) © Data flow
{ mysim *-s" 1 @f Go; | analyze (B[0], B[1]);

: - analyze (B[2], B[3]);
= Conventional expressions yze (BL2] [3])

1f (x == 3) {
y = X+2;
s = @strcat (“y: 7, vy);

Swift: A language for distributed parallel scripting, J. Parallel Computing, 2011
S



N
app( ) functions encapsulate scientific application tools

100.0 ¢ 25.0 In Swift code:

To run:
psim -s 1ubg.fas -pdb p -t 100.0 -d 25.0 >log

app (PDB ps, Text log) predict (Protein seq,
Float t, Float dt)

{
psim "-s" @pseq.fasta "-pdb" @ps
ll_tll temp ll_dll dt
PSim application stdout = log;
}

Protein p <ext; exec="Pmap", id="1ubq">;
PDB structure;
Text log;

(structure, log) = predict(p, 100., 25.);




Pervasively parallel

=  Swift is a parallel scripting system for grids, clouds and clusters

(int r) myproc (int 1)
{

int £ = F(i);

int g = G(1);

r = f + g;
}

= F() and G() are computed in parallel

— Can be Swift functions, or leaf tasks (executables or scripts in shell, python, R,
Octave, MATLAB, ...)

= rcomputed when they are done
= This parallelism is automatic
=  Works recursively throughout the program’s call graph



Pervasive parallel data flow

parent task a
spawns §
child task b ™.

a writes data

d waits for
data

Q Task

Shared
] data item

..~ Tlask spawn
dependency

Data
dependency




All data atoms in Swift are “futures”

a = f(b) 'X

Name:a | Type: float | Value: unset | Waiting evals

__~

v

X =a+f(v)

y =f(a)

Z = a+b




Functional composition of a parameter sweep
in Swift

Sweep(Protein pSet[ ])

{
int nSim = 1000;

int maxRounds = 3;
float startTemp[ ] =[ 100.0, 200.0 |;
floatdelT[]=[1.0, 1.5, 2.0, 5.0, 10.0 |;
foreach p, pnin pSet {
foreach t in startTemp {
foreach d in delT {
lterativeFixing(p, nSim, maxRounds, t, d);

}
} 10 proteins x 1000 simulations x

\ } 3 rounds x 2 temps x 5 deltas
= 300K tasks



Data-intensive example:
Processing MODIS land-use data

landU
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Swift loops process hundreds of images in parallel

analyze

Image processing pipeline for land-use data from the MODIS satellite instrument...




Example of Swift’s implicit parallelism:
Processing MODIS land-use data

foreach raw,1 in rawFiles {
land[i1i] = (raw,1l);

colorFiles[1] = colorize(raw);

}
(topTiles, topFiles, topColors) =
(land, landType, nSelect);

gridMap = mark(topTiles);
montage =

assemble(topFiles,colorFiles,webDir);



Example of Swift’s implicit parallelism:
Processing MODIS land-use data

andUse
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Swift loops process hundreds of images in parallel

analyze
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Spatial normalization of functional MRI runs

Dataset-level workflow

reorient
reorient
alignlinear

reslice

softmean

alignlinear

combine_warp

reslice_warp

strictmean

binarize

gsmooth

Expanded (10 volume
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Complex scripts can be well-structured

programming in the large:

(Run or) reorientRun ( Run ir, string direction)
(Run snr) functional ( Run r, NormAnat a, { L
_ , foreach Volume iv, i inir.v {
Air shrink’) or.v[i] = reorient(iv, direction);
{ RunyroRun = reorientRun(r, "y"); }

Run roRun = reorientRun( yroRun , "x"); }

Volume std = roRun|[0];

Run rndr = random_select( roRun, 0.1 );

AirVector rndAirVec = align_linearRun( rndr, std, 12, 1000, 1000, "81 3 3" );
Run reslicedRndr = resliceRun( rndr, rndAirVec, "o", "k" );

Volume meanRand = softmean( reslicedRndr, "y", "null" );

Air mnQAAiIr = alignlinear( a.nHires, meanRand, 6, 1000, 4, "81 3 3" );
Warp boldNormWarp = combinewarp( shrink, a.aWarp, mnQAAir );

Run nr = reslice_warp_run( boldNormWarp, roRun );

Volume meanAll = strictmean( nr, "y", "null" )

Volume boldMask = binarize( meanAll, "y" );

snr = gsmoothRun( nr, boldMask, "6 6 6" );

}.L) http://swift-lang.org



How Swift enables workflow execution across multiple
HPC and cloud resources
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The Swift runtime system has drivers and algorithms to efficiently support and aggregate diverse runtime environments
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W.§

Provider Architecture

Runs app tasks and moves files

C

Client

S

Server

(swift command)

(coaster-service
command)

W
Worker

(worker.pl
command)
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C

Client

Service Architecture

(swift command)

S

Server
(coaster-service
command)

Building blocks of the Swift distributed workflow service

wf.swift
e ]

swift command
runs one swift
script

Lives on login runs,
workflow service
host, laptop, etc

Server directs
tasks to workers

Lives inside client
JVM, or standalone
service on client
host, or at compute
site service node,

W

Worker

L (worker.pl

|| command)

Workers run tasks on
compute nodes

Runs on compute node,
1 per node or one per
CPU or CPU group

20



Execution Provider Data Staging

Some execution providers can also move data
(Globus, Condor and Swift’s “coaster”)

Client EEEN Server < W
(swift command) (coaster-service
Worker
——— command] | 11—
L (worker.pl
data 1 command)
exec

-



Service Architecture
Ports used to connect Swift services

[
Swift.conf Service Worker
Specifies c Port S Port
provider Client Server
service . '—> _C< W
ports  pWift command) (coaster-service y
s Monior command) Worker
ort | (worker.pl

|| command)
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Centralized evaluation can be a bottleneck
at extreme scales

Had this (Swift/K): For extreme scale, we need this (Swift/T):

Data flow program Data flow program
) ‘ x 1,000
| ] _ L

Data flow engine

L 500 tf-SkS/ S Control tasks

’ Task l Task | Task l Task l

L 500,000 tasks/s -

Engine Engine

g

Centralized evaluation Distributed evaluation
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Swift/T: productive extreme-scale scripting

| Parallel Swift worker process i
- |evaluator MPI
< 3
data store
python ’//"
i {1
powered oe 'ik,)t k

= Script-like programming with “leaf” tasks
— In-memory function calls in C++, Fortran, Python, R, ... passing in-memory objects
— More expressive than master-worker for “programming in the large”
— Leaf tasks can be MPI programs, etc. Can be separate processes if OS permits.

= Distributed, scalable runtime manages tasks, load balancing, data movement
= User function calls to external code run on thousands of worker nodes
S



Parallel tasks in Swift/T

Swift | Compiler Turbine
[ Load balancing / Data services (ADLB) ]

Leaf tasks l T Notifications

' Worker [Worker] [Worker] ' Worker [Worker]

{Worker [Worker] [Worker] . Worker [Worker]

comm comm
Dynamically-created Tasks may be placed
communicator with process or node

location constraints

= Swift expression: z = @par=32 f(x,V);
= ADLB server finds 8 available workers

— Workers receive ranks from ADLB server

— Performs comm = MPI Comm create group ()
=  Workers perform £ (x, y) communicating on comm



LAMMPS parallel tasks

foreach i1 in [0:20] {
t = 300+1i;
sed command = sprintf("s/ TEMPERATURE /%i/g", t);
lammps file name = sprintf ("input-%i.inp", t);
lammps args = "-1 " + lammps file name;
file lammps input<lammps file name> =
sed(filter, sed command) =>
@par=8 lammps (lammps args) ;

= LAMMPS provides a
convenient C++ API
= Easily used by Swift/T e )

pa rallel tasks Tasks with varying sizes packed into big MPI run
Black: Compute Blue: Message White: Idle




Swift/T-specific features

Task locality: Ability to send a task to a process
— Allows for big data —type applications
— Allows for stateful objects to remain resident in the workflow
— location L = find data(D);
int y = (@location=L f (D, x);
= Data broadcast
= Task priorities: Ability to set task priority
— Useful for tweaking load balancing

Updateable variables
— Allow data to be modified after its initial write

— Consumer tasks may receive original or updated values when they emerge
from the work queue

Wozniak et al. Language features for scalable distributed-memory
dataflow computing. Proc. Dataflow Execution Models at PACT, 2014.
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Swift/T: scaling of trivial foreach { } loop
100 microsecond to 10 millisecond tasks
on up to 512K integer cores of Blue Waters

10000M ]
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oMy LegET ideal
8 1OOM ----------------- - 10mS
Q 10M | e T | 1ms
TV [ fms
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---------------- . mS
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Large-scale applications using Swift

Simulation of super- A AR

cooled glass materials :b-\;w;

Protein and biomolecule NI M
structure and interaction

© = N W

Climate model analysis and
decision making for global
food production & supply

F,(K=7.25.0)

Materials science at the
Advanced Photon Source

° Latitude N

Multiscale subsurface
flow modeling

Modeling of power grid
for OE applications

0O ®© 0 © 0 6

All have published science
results obtained using
Swift

v ¥

Red indicates higher statistical
confidence in data




Boosting Light Source Productivity with Swift ALCF Data Analysis
H Sharma, J Almer (APS); J Wozniak, M Wilde, | Foster (MCS)
Impact and Approach

Accomplishments

ALCF Contributions

HEDM imaging and analy5|s
shows granular S
material structure,
non-destructively

APS Sector 1 scientists use
Mira to process data from live
HEDM experiments, providing
real-time feedback to correct
or improve in-progress
experiments

Scientists working with
Discovery Engines LDRD
developed new Swift analysis
workflows to process APS data
from Sectors 1, 6, and 11

Mira analyzes experiment in
10 mins vs. 5.2 hours on APS
cluster: > 30X improvement

Scaling up to ~ 128K cores
(driven by data features)

Cable flaw was found and
fixed at start of experiment,
saving an entire multi-day
experiment and valuable user
time and APS beam time.

In press: High-Energy Synchrotron X-
ray Techniques for Studying Irradiated
Materials, J-S Park et al, J. Mat. Res.
Big data staging with MPI-10 for
interactive X-ray science, ) Wozniak et
al, Big Data Conference, Dec 2014

Design, develop, support, and trial
user engagement to make Swift
workflow solution on ALCF
systems a reliable, secure and
supported production service

Creation and support of the Petrel
data server

Reserved resources on Mira for
APS HEDM experiment at Sector
1-1D beamline (8/10/2014 and

future sessions in APS 2015 Run 1)

ﬁ# v‘}:
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Conclusion: parallel workflow scripting is practical,
productive, and necessary, at a broad range of scales

= Swift programming model demonstrated feasible and
scalable on XSEDE, Blue Waters, OSG, DOE systems

= Applied to numerous MTC and HPC application domains
— attractive for data-intensive applications

— and several hybrid programming models

= Proven productivity enhancement in materials,
genomics, biochem, earth systems science, ...

= Deep integration of workflow in progress at XSEDE, ALCF

Workflow through implicitly parallel dataflow is
productive for applications and systems at many scales,
including on highest-end system



What’s next?

= Programmability

— New patterns ala Van Der Aalst et al (workflowpatterns.org)
" Fine grained dataflow — programming in the smaller?

— Run leaf tasks on accelerators (CUDA GPUs, Intel Phi)

— How low/fast can we drive this model?

= PowerFlow
— Applies dataflow semantics to manage and reduce energy usage
= Extreme-scale reliability
= Embed Swift semantics in Python, R, Java, shell, make
— Can we make Swift “invisible”? Should we?
= Swift-Reduce

— Learning from map-reduce
— Integration with map-reduce



GeMTC: GPU-enabled Many-Task Computing

Motivation: Support for MTC on all accelerators!

Goals: Approach:

1) MTC support  2) Programmability Design & implement GeMTC middleware:
3) Efficiency 4) MPMD on SIMD 1) Manages GPU 2) Spread host/device
5) Increase concurrency to warp level 3) Workflow system integration (Swift/T)

il J
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Server %\} Work Stealing L( Server ]

CPU Worker ] éPU Worker ] j j

CPU Worker ]

CPU Worker J CPU Worker ] j j j j CPU Worker J
GeMTC Worker] GeMTC Worker] a a a a GeMTC Worker]
GPU GPu ||| [/ GPU
Node O Node 1 Node N



Further research directions

= Deeply in-situ processing for extreme-scale analytics
= Shell-like Read-Evaluate-Print Loop ala iPython

= Debugging of extreme-scale workflows

Deeply in-situ analytics of a
climate simulation
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Swift: A language for distributed parallel scripting
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ARTICLE INFO ABSTRACT

Article history: Scientists, engineers, and statisticians must execute domain-specific application programs

Available online 12 July 2011 many times on large collections of file-based data. This activity requires complex orches-
tration and data management as data is passed to, from, and among application invoca-

Keywords: tions. Distributed and parallel computing resources can accelerate such processing, but

Swift their use further increases programming complexity. The Swift parallel scripting language

Parallel programming
Scripting
Dataflow

reduces these complexities by making file system structures accessible via language con-
structs and by allowing ordinary application programs to be composed into powerful par-
allel scripts that can efficiently utilize parallel and distributed resources. We present
Swift’s implicitly parallel and deterministic programming model, which applies external
applications to file collections using a functional style that abstracts and simplifies distrib-
uted parallel execution.

htt : Parallel Computing, Sep 2011




Work of: J Dennis, M Woitasek, S
Mickelson, R Jacob, M Vertenstein

Benefit of implicit pervasive parallelism: Analysis
& visualization of high-resolution climate models

powered by Swift

Diagnostic scripts for each climate
model (ocean, atmospehere, land,
ice) were expressed in complex g.:_
shell scripts o
Recoded in Swift, the CESM
community has benefited from
significant speedups and more
modular scripts

g8

oPonTa
3333

http://swift-lanqg.orq

>
=z
4

¢ o . o

ey 3 13 A Ll - 3 V| oF_ . 3
= = =
T[T, - . I .
saiilliousNEass F »5883838858 888 * w388 IBBTRIBEE 2
: £ g




Swift/T Compiler and Runtime

Swift
Script

Data
Definitions

| Data Flow 4

Expressions

External
Functions

\/_‘

STC

Semantic
Analysis

»-
r

Flattening & 7“
Optimization |

Code

| Generation |

STC translates high-level Swift

expressions into low-level

Turbine operations:

-

Turbine
Code

. Task /Data |
Dependency ]

Memory
Management

Library
Access

s e

-

Turbine
Execution

mpiexec

» Interpreter

Turbine
Iibrar_ies

ADLB

User
_ Libraries |

Create/Store/Retrieve typed data

Manage arrays

— Manage data-dependent tasks

* Wozniak et al. Large-scale application composition via distributed-memory
data flow processing. Proc. CCGrid 2013.
* Armstrong et al. Compiler techniques for massively scalable implicit
task parallelism. Proc. SC 2014.
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( Server O 1 ( Server 1 ]
Work stealing,

Tasks: ready notifications Tasks waiting
defn: £(1, 'foo',b<9>)
priority: 0 = = Tasks ready

Tasks: waiting Dependencies

defn: g(<2>,<9>) Data
priority: O
Dependencies Data

New tasks operations

( Worker 2 1 v

-y <3>,<5>,<2>, ..

Data
int ~~ readers: 1 state: runnin
ig> writers: 1 Data S . : g
value:  (unset) operations £(2, 'bar', <9
readers: 2
fig:t writers: O '
value: 3.14 Worker 3
readers: 1
array writers: 2 Tasks 10 !  state: idle
<9> value: execute
{<2>,<3>,<5>}

Fig. 4: Runtime architecture showing distributed worker pro-
a cesses coordinating through task and data operations.



Swift/T optimizing compiler and IR’s

STC Compiler
IR-1 VIR-1[ p )
C e 4. ostprocessing.: —
-—L Optimization X Ref. Counting & Dlstr!buted
Value. Passing Runtime

/.
IR-2 | |
Swift/T ' - § =
Code _’[ Frontend J L Code Generation /%




Swift/T optimization challenge: distributed vars

| a = fl(); b = f2(a);
2 c, d= f3(a, b); e = f4(f5(c);
3 f = £4(£5(d); g = f6(e, £f);

(a) Swift/T code fragment

” .
(b) Unoptimized version, passing data as shared data and

perform synchronization

S http://swift-lang.org *



Swift/T optimizations improve data locality

value of e

value of a value of b value Of C passed
Pooe 29 PF
valueoft‘ )‘f

(c) After wait pushdown and elimination of shared data in favor
of parent-to-child data passing

value of e

@ {0 RO, .
f5(); f4(); |

(d) After pipeline fusion merges tasks

S http://swift-lang.org 43



Swift/T application benchmarks
on Blue Waters
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Fig. 10: Application speedup and scalability at different optimization levels. X axes show scale in cores. Primary Y axes show
application throughput in application-dependent terms. Secondary Y axes show problem size or degree of parallelism where
applicable.



