
Swift Workflows for Simulations and
Data Analytics

August	2015	

	
Presenter	and	contact:	

	Michael	Wilde					wilde@anl.gov	
																																

	h=p://swi@-lang.org	

2

U . S . D E PA RT M E N T O F

ENERGY

Swift gratefully acknowledges support from:

h=p://swi@-lang.org	

When do you need HPC workflow?
Example application: protein-ligand docking for drug screening

(B)	

O(100K)	
drug	

candidates	

…then	hundreds	of	
detailed	MD	
models	to	find	
10-20	frui>ul	
candidates	for	
wetlab	&	APS	
crystallography	

O(10)	proteins	
implicated	in	a	disease	

=	1M	
docking	
tasks…	

X	

…	

4	

For	protein	docking	workflow:	
	

foreach p, i in proteins {
 foreach c, j in ligands {
 (structure[i,j], log[i,j]) =
 dock(p, c, minRad, maxRad);
}
scatter_plot = analyze(structure)

To run:

swift –site blues dock.swift

Expressing this many task workflow in Swift

The	Swi@	runHme	system	has	drivers	and	algorithms	to	efficiently	support	and	aggregate	diverse	runHme	environments	

Swift enables execution of simulation campaigns across
multiple HPC and cloud resources

5	

analyze	colorize	
assemble	
mark	apps	

analyze	colorize	
assemble	
mark	apps	

analyze	colorize	
assemble	
mark	apps	

analyze	colorize	
assemble	
mark	apps	

analyze	colorize	
assemble	
mark	apps	

Local data mark	Apps	

Swift host: login node, laptop, …

Scripts

Data servers
Data servers

Data servers

Campus	systems	

Cloud	resources	

Petascale	systems	

NaHonal	infrastructure	

What Swift does for you

6	

				Makes	parallelism	more	transparent	
			Implicitly	parallel	funcLonal	dataflow	programming	
	

Makes	compuHng	locaHon	more	transparent	
		Runs	your	script	on	mulLple	distributed	sites	and	
diverse	compuLng	resources	(desktop	to	petascale)	

	

Makes	basic	failure	recovery	transparent	
			Retries/relocates	failing	tasks	
			Can	restart	failing	runs	from	point	of	failure	

Swift in a nutshell

§  Data	types	
string s = “hello world”;

int i = 4;

int A[];
	

§  Mapped	data	types	
type image;

image file1<“snapshot.jpg”>;

§  Mapped	funcHons
app (file o) myapp(file f, int i)
{ mysim "-s" i @f @o; }
	

§  ConvenHonal	expressions	
if (x == 3) {

 y = x+2;

 s = @strcat(“y: ”, y);

}

§  Structured	data	
image A[]<array_mapper…>;	

	

§  Loops	
foreach f,i in A {

 B[i] = convert(A[i]);

}

	

§  Data	flow
analyze(B[0], B[1]);

analyze(B[2], B[3]);

	

Swi':	A	language	for	distributed	parallel	scrip9ng,	J.	Parallel	Compu9ng,	2011	

app()	func9ons	encapsulate	scien9fic	applica9on	tools

Swi@	app	funcHon	
“predict()”	

t	

seq	 dt	
log	

PSim	applicaHon	
-t	 -d	-s	-c	

>	pdb	

ps	

	
To	run:	
						psim	-s	1ubq.fas	-pdb	p	-t	100.0	-d	25.0	>log		
	
In	Swi7	code:	
	
							app	(PDB	ps,	Text	log)	predict	(Protein	seq,	
																																																															Float	t,	Float	dt)	
							{	
										psim				"-s"		@pseq.fasta			"-pdb"	@ps	
																							"–t"		temp															"-d"					dt	
																							stdout	=	log;	
							}	
	
	
							Protein	p	<ext;	exec="Pmap",	id="1ubq">;	
							PDB	structure;	
							Text	log;	
	
		
							(structure,	log)	=	predict(p,	100.,	25.);	

Fasta	
file	

100.0	 25.0	

Pervasively parallel

§  Swi@	is	a	parallel	scripHng	system	for	grids,	clouds	and	clusters	

§  F()	and	G()	are	computed	in	parallel	
–  Can	be	Swi@	funcHons,	or	leaf	tasks	(executables	or	scripts	in	shell,	python,	R,	

Octave,	MATLAB,	...)	
§  r	computed	when	they	are	done	
§  This	parallelism	is	automaLc	
§  Works	recursively	throughout	the	program’s	call	graph	

(int r) myproc (int i)
{
 int f = F(i);
 int g = G(i);
 r = f + g;
}

Pervasive parallel data flow

All data atoms in Swift are “futures”

Name:	a	 Type:	float	 Value:	unset	 WaiHng	evals	

x	=	a	+	f(v)	

y	=	f(a)	

z	=	a+b	

a	=	f(b)	

Functional composition of a parameter sweep
in Swift
1.  Sweep(Protein	pSet[])	
2.  {	
3.  			int	nSim	=	1000;	
4.  			int	maxRounds	=	3;	
5.  			float	startTemp[]	=	[100.0,	200.0];	
6.  			float	delT[]	=	[1.0,	1.5,	2.0,	5.0,	10.0];	
7.  			foreach	p,	pn	in	pSet	{	
8.  						foreach	t	in	startTemp	{	
9.  									foreach	d	in	delT	{	
10.  												IteraHveFixing(p,	nSim,	maxRounds,	t,	d);	
11.  									}	
12.  						}	
13.  			}	
14.  }		

10	proteins	x	1000	simulaHons	x	
3	rounds	x	2	temps	x	5	deltas	

=	300K	tasks		

Data-intensive example:
Processing MODIS land-use data

analyze'

colorize'
x'317'

landUse'
x'317'

mark'

Swift loops process hundreds of images in parallel

assemble'

	Image	processing	pipeline	for	land-use	data	from	the	MODIS	satellite	instrument…			

Example of Swift’s implicit parallelism:
 Processing MODIS land-use data

foreach raw,i in rawFiles {
 land[i] = landUse(raw,1);
 colorFiles[i] = colorize(raw);
}
(topTiles, topFiles, topColors) =
 analyze(land, landType, nSelect);

gridMap = mark(topTiles);
montage =  
 assemble(topFiles,colorFiles,webDir);

Example of Swift’s implicit parallelism:
 Processing MODIS land-use data

analyze'

colorize'
x'317'

landUse'
x'317'

mark'

Swift loops process hundreds of images in parallel

assemble'

	Image	processing	pipeline	for	land-use	data	from	the	MODIS	satellite	instrument…			

h=p://swi@-lang.org	

Spatial normalization of functional MRI runs
reorientRun

reorientRun

reslice_warpRun

random_select

alignlinearRun

resliceRun

softmean

alignlinear

combinewarp

strictmean

gsmoothRun

binarize

reorient/01

reorient/02

reslice_warp/22

alignlinear/03 alignlinear/07alignlinear/11

reorient/05

reorient/06

reslice_warp/23

reorient/09

reorient/10

reslice_warp/24

reorient/25

reorient/51

reslice_warp/26

reorient/27

reorient/52

reslice_warp/28

reorient/29

reorient/53

reslice_warp/30

reorient/31

reorient/54

reslice_warp/32

reorient/33

reorient/55

reslice_warp/34

reorient/35

reorient/56

reslice_warp/36

reorient/37

reorient/57

reslice_warp/38

reslice/04 reslice/08reslice/12

gsmooth/41

strictmean/39

gsmooth/42gsmooth/43gsmooth/44 gsmooth/45 gsmooth/46 gsmooth/47 gsmooth/48 gsmooth/49 gsmooth/50

softmean/13

alignlinear/17

combinewarp/21

binarize/40

reorient

reorient

alignlinear

reslice

softmean

alignlinear

combine_warp

reslice_warp

strictmean

binarize

gsmooth

Dataset-level	workflow	 Expanded	(10	volume)		workflow	
h=p://swi@-lang.org	

Complex scripts can be well-structured
programming in the large: fMRI spatial normalization script example

(Run snr) functional (Run r, NormAnat a,
 Air shrink)
{						Run yroRun = reorientRun(r , "y");

Run roRun = reorientRun(yroRun , "x");
Volume std = roRun[0];
Run rndr = random_select(roRun, 0.1);
AirVector rndAirVec = align_linearRun(rndr, std, 12, 1000, 1000, "81 3 3");
Run reslicedRndr = resliceRun(rndr, rndAirVec, "o", "k");
Volume meanRand = softmean(reslicedRndr, "y", "null");
Air mnQAAir = alignlinear(a.nHires, meanRand, 6, 1000, 4, "81 3 3");
Warp boldNormWarp = combinewarp(shrink, a.aWarp, mnQAAir);
Run nr = reslice_warp_run(boldNormWarp, roRun);
Volume meanAll = strictmean(nr, "y", "null")
Volume boldMask = binarize(meanAll, "y");
snr = gsmoothRun(nr, boldMask, "6 6 6");

}

(Run or) reorientRun (Run ir, string direction)
{
 foreach Volume iv, i in ir.v {
 or.v[i] = reorient(iv, direction);
 }
}

h=p://swi@-lang.org	

The	Swi@	runHme	system	has	drivers	and	algorithms	to	efficiently	support	and	aggregate	diverse	runHme	environments	

How Swift enables workflow execution across multiple
HPC and cloud resources

18	

analyze	colorize	
assemble	
mark	apps	

analyze	colorize	
assemble	
mark	apps	

analyze	colorize	
assemble	
mark	apps	

analyze	colorize	
assemble	
mark	apps	

analyze	colorize	
assemble	
mark	apps	

Local data mark	Apps	

Swift host: login node, laptop, …

Scripts

Data servers
Data servers

Data servers

Campus	systems	

Cloud	resources	

Petascale	systems	

NaHonal	infrastructure	

Provider Architecture

19	

C	
Client	

(swi@	command)	

S	
Server	

(coaster-service	
command)	

W	
Worker	

(worker.pl	
command)	

Runs app tasks and moves files

f	

wf.swi@	
wf.swift

W	
Worker	

(worker.pl	
command)	

W	
Worker	

(worker.pl	
command)	

W	
Worker	

(worker.pl	
command)	

swift command
runs one swift

script

Lives on login runs,
workflow service
host, laptop, etc

exec	 data	 exec	 data	

Service Architecture

20	

C	
Client	

(swi@	command)	

S	
Server	

(coaster-service	
command)	

W	
Worker	

(worker.pl	
command)	

Building blocks of the Swift distributed workflow service

f	
wf.swi@	

wf.swift

W	
Worker	

(worker.pl	
command)	

W	
Worker	

(worker.pl	
command)	

W	
Worker	

(worker.pl	
command)	

swift command
runs one swift

script

Lives on login runs,
workflow service
host, laptop, etc

Server directs
tasks to workers

Lives inside client

JVM, or standalone
service on client

host, or at compute
site service node,

Workers run tasks on
compute nodes

Runs on compute node,
1 per node or one per

CPU or CPU group

Execution Provider Data Staging

21	

C	
Client	

(swi@	command)	

S	
Server	

(coaster-service	
command)	

W	
Worker	

(worker.pl	
command)	

Some execution providers can also move data
 (Globus, Condor and Swift’s “coaster”)

f	

wf.swi@	
wf.swift

W	
Worker	

(worker.pl	
command)	

W	
Worker	

(worker.pl	
command)	

W	
Worker	

(worker.pl	
command)	

swift command
runs one swift

script

Lives on login runs,
workflow service
host, laptop, etc

exec	
data	

f	

Service Architecture

22	

C	
Client	

(swi@	command)	

S	
Server	

(coaster-service	
command)	

W	
Worker	

(worker.pl	
command)	

Ports used to connect Swift services

f	
wf.swi@	

Service
Port W	

Worker	
(worker.pl	
command)	

W	
Worker	

(worker.pl	
command)	

W	
Worker	

(worker.pl	
command)	

swift command
runs one swift

script

Lives on login runs,
workflow service
host, laptop, etc

Server directs
tasks to workers

Lives inside client

JVM, or standalone
service on client

host, or at compute
site service node,

Workers run tasks on
compute nodes

Runs on compute node,
1 per node or one per

CPU or CPU group

Swi@.conf	
Specifies	
provider	
service	
Port#	

Worker
Port

Monitor
Port

Centralized evaluation can be a bottleneck
at extreme scales

23	

Had	this	(Swi@/K):	 For	extreme	scale,	we	need	this	(Swi@/T):	

Swift/T: productive extreme-scale scripting

§  Script-like	programming	with	“leaf”	tasks	
–  In-memory	funcHon	calls	in	C++,	Fortran,	Python,	R,	…	passing	in-memory	objects	
–  More	expressive	than	master-worker	for	“programming	in	the	large”	
–  Leaf	tasks	can	be	MPI	programs,	etc.	Can	be	separate	processes	if	OS	permits.	

§  Distributed,	scalable	runHme	manages	tasks,	load	balancing,	data	movement	
§  User	funcHon	calls	to	external	code	run	on	thousands	of	worker	nodes	

Swi@	
control	
process	

Swi@	
control	
process	

Parallel	
evaluator	

and	
data	store	

Swi@	worker	process	
	
	
	
	
	
	

C	 C++	 Fortran	

Swi@	worker	process	
	
	
	
	
	
	

C	 C++	 Fortran	

Swi@	worker	process	
	
	
	
	
	
	

C	 C++	 Fortran	
MPI	

Scripts

Parallel tasks in Swift/T

§  Swi@	expression:	z = @par=32 f(x,y);
§  ADLB	server	finds	8	available	workers	

–  Workers	receive	ranks	from	ADLB	server	
–  Performs	comm = MPI_Comm_create_group()

§  Workers	perform	f(x,y)communicaHng	on	comm
	

LAMMPS parallel tasks

§  LAMMPS	provides	a	
convenient	C++	API	

§  Easily	used	by	Swi@/T	
parallel	tasks	

foreach i in [0:20] {
 t = 300+i;
 sed_command = sprintf("s/_TEMPERATURE_/%i/g", t);
 lammps_file_name = sprintf("input-%i.inp", t);
 lammps_args = "-i " + lammps_file_name;
 file lammps_input<lammps_file_name> =
 sed(filter, sed_command) =>
 @par=8 lammps(lammps_args);
}

Tasks	with	varying	sizes	packed	into	big	MPI	run		
Black:	Compute		Blue:	Message		White:	Idle	

Swift/T-specific features

§  Task	locality:	Ability	to	send	a	task	to	a	process	
–  Allows	for	big	data	–type	applicaHons	
–  Allows	for	stateful	objects	to	remain	resident	in	the	workflow	
–  location L = find_data(D);

int y = @location=L f(D, x);

§  Data	broadcast	
§  Task	prioriHes:	Ability	to	set	task	priority	

–  Useful	for	tweaking	load	balancing	
§  Updateable	variables	

–  Allow	data	to	be	modified	a@er	its	iniHal	write	
–  Consumer	tasks	may	receive	original	or	updated	values	when	they	emerge	

from	the	work	queue	

	 27	

Wozniak	et	al.	Language	features	for	scalable	distributed-memory	
dataflow	compuHng.	Proc.	Dataflow	ExecuHon	Models	at	PACT,	2014.		

Swift/T: scaling of trivial foreach { } loop
100 microsecond to 10 millisecond tasks
on up to 512K integer cores of Blue Waters

28	

Large-scale applications using Swift

§  SimulaHon	of	super-	
cooled	glass	materials	

§  Protein	and	biomolecule	
structure	and	interacHon	

§  Climate	model	analysis	and		
decision	making	for	global		
food	producHon	&	supply	

§  Materials	science	at	the	
Advanced	Photon	Source	

§  MulHscale	subsurface	
flow	modeling	

§  Modeling	of	power	grid	
for	OE	applicaHons	

All	have	published	science	
results	obtained	using	
Swi@	
	

E	

C	

A	

B	

A	

B	

C	

D	

E	

F	
F	

D	

Assess	

Red	indicates	higher	staHsHcal	
confidence	in	data	

Impact and Approach Accomplishments ALCF Contributions
•  HEDM	imaging	and	analysis	

shows	granular		
material	structure,	of		
non-destrucHvely	

•  APS	Sector	1	scienHsts	use	
Mira	to	process	data	from	live	
HEDM		experiments,	providing	
real-Hme	feedback	to	correct	
or	improve	in-progress	
experiments	

•  ScienHsts	working	with	
Discovery	Engines	LDRD	
developed	new	SwiR	analysis	
workflows	to	process	APS	data	
from	Sectors	1,	6,	and	11	

•  Mira	analyzes	experiment	in	
10	mins	vs.	5.2	hours	on	APS	
cluster:		>	30X	improvement	

•  Scaling	up	to	~	128K	cores	
(driven	by	data	features)		

•  Cable	flaw	was	found	and	
fixed	at	start	of	experiment,	
saving	an	enHre	mulH-day	
experiment	and	valuable	user	
Hme	and	APS	beam	Hme.	

•  In	press:	High-Energy	Synchrotron	X-
ray	Techniques	for	Studying	Irradiated	
Materials,	J-S	Park	et	al,	J.	Mat.	Res.	

•  Big	data	staging	with	MPI-IO	for	
interacLve	X-ray	science,	J	Wozniak	et	
al,	Big	Data	Conference,	Dec	2014	

•  Design,	develop,	support,	and	trial	
user	engagement	to	make	SwiR	
workflow	soluHon	on	ALCF	
systems	a	reliable,	secure	and	
supported	producHon	service	

	
•  CreaHon	and	support	of	the	Petrel	

data	server	
	
•  Reserved	resources	on	Mira	for	

APS	HEDM	experiment	at	Sector	
1-ID	beamline	(8/10/2014	and	
future	sessions	in	APS	2015	Run	1)	

Boosting Light Source Productivity with Swift ALCF Data Analysis
H	Sharma,	J	Almer	(APS);		J	Wozniak,	M	Wilde,	I	Foster	(MCS)	

!

Analyze	

Fix	

Re-analyze	

Valid	
Data!	

2 3

4

5

1

Conclusion: parallel workflow scripting is practical,
productive, and necessary, at a broad range of scales

§  Swi@	programming	model	demonstrated	feasible	and	
scalable	on	XSEDE,	Blue	Waters,	OSG,	DOE	systems		

§  Applied	to	numerous	MTC	and	HPC	applicaHon	domains	
–  a=racHve	for	data-intensive	applicaHons	
–  and	several	hybrid	programming	models	

§  Proven	producHvity	enhancement	in	materials,	
genomics,	biochem,	earth	systems	science,	…	

§  Deep	integraHon	of	workflow	in	progress	at	XSEDE,	ALCF	
	Workflow through implicitly parallel dataflow is

productive for applications and systems at many scales,
including on highest-end system

What’s next?

§  Programmability	
–  New	pa=erns	ala	Van	Der	Aalst	et	al	(workflowpa=erns.org)	

§  Fine	grained	dataflow	–	programming	in	the	smaller?	
–  Run	leaf	tasks	on	accelerators	(CUDA	GPUs,	Intel	Phi)	
–  How	low/fast	can	we	drive	this	model?	

§  PowerFlow	
–  Applies	dataflow	semanHcs	to	manage	and	reduce	energy	usage	

§  Extreme-scale	reliability	
§  Embed	Swi@	semanHcs	in	Python,	R,	Java,	shell,	make	

–  Can	we	make	Swi@	“invisible”?		Should	we?	
§  Swi@-Reduce	

–  Learning	from	map-reduce	
–  IntegraHon	with	map-reduce	

	

GeMTC: GPU-enabled Many-Task Computing

Goals:	
1)	MTC	support					2)	Programmability	
3)	Efficiency											4)	MPMD	on	SIMD	
5)	Increase	concurrency	to	warp	level	

		

	

Approach:		
Design	&	implement	GeMTC	middleware:	
1)	Manages	GPU			2)	Spread	host/device	
3)	Workflow	system	integraHon	(Swi@/T)	

Mo9va9on:	Support	for	MTC	on	all	accelerators!	

Further research directions

§  Deeply	in-situ	processing	for	extreme-scale	analyHcs	
§  Shell-like	Read-Evaluate-Print	Loop	ala	iPython	
§  Debugging	of	extreme-scale	workflows	

Deeply in-situ analytics of a
climate simulation

35

U . S . D E PA RT M E N T O F

ENERGY

Swift gratefully acknowledges support from:

h=p://swi@-lang.org	

Supplementary Material

37	

Author's personal copy

Swift: A language for distributed parallel scripting

Michael Wilde a,b,⇑, Mihael Hategan a, Justin M. Wozniak b, Ben Clifford d, Daniel S. Katz a,
Ian Foster a,b,c
aComputation Institute, University of Chicago and Argonne National Laboratory, United States
bMathematics and Computer Science Division, Argonne National Laboratory, United States
cDepartment of Computer Science, University of Chicago, United States
dDepartment of Astronomy and Astrophysics, University of Chicago, United States

a r t i c l e i n f o

Article history:
Available online 12 July 2011

Keywords:
Swift
Parallel programming
Scripting
Dataflow

a b s t r a c t

Scientists, engineers, and statisticians must execute domain-specific application programs
many times on large collections of file-based data. This activity requires complex orches-
tration and data management as data is passed to, from, and among application invoca-
tions. Distributed and parallel computing resources can accelerate such processing, but
their use further increases programming complexity. The Swift parallel scripting language
reduces these complexities by making file system structures accessible via language con-
structs and by allowing ordinary application programs to be composed into powerful par-
allel scripts that can efficiently utilize parallel and distributed resources. We present
Swift’s implicitly parallel and deterministic programming model, which applies external
applications to file collections using a functional style that abstracts and simplifies distrib-
uted parallel execution.

! 2011 Elsevier B.V. All rights reserved.

1. Introduction

Swift is a scripting language designed for composing applicationprograms into parallel applications that can be executedon
multicore processors, clusters, grids, clouds, and supercomputers. Unlike most other scripting languages, Swift focuses on the
issues that arise from the concurrent execution, composition, and coordination of many independent (and, typically, distrib-
uted) computational tasks. Swift scripts express the execution of programs that consume and produce file-resident datasets.
Swift uses a C-like syntax consisting of function definitions and expressions, with dataflow-driven semantics and implicit par-
allelism. To facilitate the writing of scripts that operate on files, Swift mapping constructs allow file system objects to be ac-
cessed via Swift variables.

Many parallel applications involve a single message-passing parallel program: a model supported well by the Message
Passing Interface (MPI). Others, however, require the coupling or orchestration of large numbers of application invocations:
either many invocations of the same program or many invocations of sequences and patterns of several programs. Scaling up
requires the distribution of such workloads among cores, processors, computers, or clusters and, hence, the use of parallel or
grid computing. Even if a single large parallel cluster suffices, users will not always have access to the same system (e.g., big
machines may be congested or temporarily unavailable because of maintenance). Thus, it is desirable to be able to use what-
ever resources happen to be available or economical at the moment when the user needs to compute—without the need to
continually reprogram or adjust execution scripts.

0167-8191/$ - see front matter ! 2011 Elsevier B.V. All rights reserved.
doi:10.1016/j.parco.2011.05.005

⇑ Corresponding author at: Computation Institute, University of Chicago and Argonne National Laboratory, United States. Tel.: +1 630 252 3351.
E-mail address: wilde@mcs.anl.gov (M. Wilde).

Parallel Computing 37 (2011) 633–652

Contents lists available at ScienceDirect

Parallel Computing

journal homepage: www.elsevier .com/ locate/parco

Parallel	CompuHng,	Sep	2011	
h=p://swi@-lang.org	

Benefit of implicit pervasive parallelism: Analysis
& visualization of high-resolution climate models
powered by Swift

AMWG	DiagnosHc	Package	Results:	

	 									RewriHng	the	AMWG	DiagnosHc	 												 																		
Package	in	Swi@	created	a	3X		 																																								speedup.		
	
(a) The	AMWG	DiagnosHc	Package	was	used	to	calculate	the	

climatological	mean	files	for	5	years	of	0.10	degree	up-sampled	data	
from	a	0.25	degree	CAM-SE	cubed	sphere	simulaHon.		This	was	ran	
on	fusion,	a	cluster	at	Argonne,	on	4	nodes	using	one	core	on	each.	

(b) The	AMWG	DiagnosHc	Package	was	used	to	compare	two	data	sets.		
The	data	consisted	of	two	sets	of	30	year,	1	degree	monthly	average	
CAM	files.		This	was	ran	on	one	data	analysis	cluster	node	on	mirage	
at	NCAR.	

(c)  The	AMWG	Package	was	used	to	compare	10	years	of	0.5	degree	
resoluHon	CAM	monthly	output	files	to	observaHonal	data.		This	
comparison	was	also	ran	on	one	node	on	mirage.	

http://swift-lang.org

§  DiagnosHc	scripts	for	each	climate	
model	(ocean,	atmospehere,	land,	
ice)	were	expressed	in	complex	
shell	scripts		

§  Recoded	in	Swi@,	the	CESM	
community	has	benefited	from	
significant	speedups	and	more	
modular	scripts	

Work	of:	J	Dennis,	M	Woitasek,	S	
Mickelson,	R	Jacob,	M	Vertenstein	

Swift/T Compiler and Runtime

§  STC	translates	high-level	Swi@	
expressions	into	low-level		
Turbine	operaHons:	

39	

–  Create/Store/Retrieve	typed	data	
–  Manage	arrays	
–  Manage	data-dependent	tasks	

•  Wozniak	et	al.	Large-scale	applicaHon	composiHon	via	distributed-memory		
data	flow	processing.	Proc.	CCGrid	2013.		

•  Armstrong	et	al.	Compiler	techniques	for	massively	scalable	implicit		
task	parallelism.	Proc.	SC	2014.	

Swift/T

h=p://swi@-lang.org	

Swift/T optimizing compiler and IR’s

Swift/T optimization challenge: distributed vars

42	h=p://swi@-lang.org	

Swift/T optimizations improve data locality

43	h=p://swi@-lang.org	

Swift/T application benchmarks
on Blue Waters

44	

